Michele J. Losee, Ph.D., is a 2019 graduate of the Doctoral Program in Environmental Studies at Antioch University, New England.

Dissertation Committee:

  • Peter Palmiotto, D.F., Committee Chair
  • Lisabeth Willey, Ph.D., Committee Member
  • Todd Katzner, Ph.D., Committee Member
  • Tyler Coleman, Ph.D., Committee Member


golden eagles, multi-scale methods, habitat suitability model, Arizona, productivity, nesting phenology, prey dynamics

Document Type


Publication Date



Golden Eagles (Aquila chrysaetos) have a broad range globally and in general are well-studied. However, Arizona’s Golden Eagle population remained essentially unstudied until 2011, when Arizona Game and Fish Department (AZGFD) began nest surveys for cliff nesting Golden Eagles throughout the state. As a result of this data collection, the natural history of Arizona’s Golden Eagles is finally revealing itself. This dissertation outlined a reliable description of their nesting phenology that provides a framework for timing surveys and a baseline to monitor the effects of climate change on Golden Eagles. The mean date for egg-laying was February 14 and pairs nesting in the high desert initiate nesting about ten days later than their southern counterparts. A brief study collecting prey remains determined that Black-tailed Jack Rabbit (Lepus californicus) was the central prey species for Golden Eagles in northern Arizona. The results of a multiscale habitat suitability model (HSM) determined that slope between 18º-28º was the most important habitat characteristics for Golden Eagles and the sagebrush landcover was the least important. The multiscale productivity prediction model did not predict with high accuracy; however, the results did reveal some data gaps and provided guidance for adjustments in the future. The results of this entire dissertation can guide future research priorities for Golden Eagles in Arizona. For example, more research on Golden Eagle prey dynamics is needed to determine the impact prey have on their nesting success. Additional research should focus on adding human impact factors such as recreational activity or elemental mining as possible factors that negatively influence nesting productivity. Finally, quantifying climate features on a finer temporal scale should be considered and continued nest site data collection will increase the sample size for more informative results.